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ABSTRACT 

Discovering highly interacting proteins and its pathways is a challenge for computational biologists. Identifying interactions among 
proteins and its pathways has been found to be useful for drug development. In our study, we collected data of 40,788 protein - 
protein interactions from HPRD and IntAct. This pooled off data was loaded into cytoscape (version 2.63) to visualize the human 
interactome network through the grid layout method. By using Connected Component (CC) algorithm, the largest and the highly 
connected human network were found. From 36,945 binary protein – protein interactions, 89 highly connected modules were 
selected, which are of high score value. The total numbers of proteins in each of the 89 modules were found out. The proteins from 
all the 89 clusters were classified into 2 categories - normal and diseased pathways. From all these 89 clusters, 1350 proteins were 
obtained and were unique, of which 374 proteins are in the normal pathways and 976 proteins in diseased pathways. But 976 
proteins were found in both normal and diseased pathways. Further computational studies can help to understand the changes that 
occur in the proteins to become in the diseased pathways. 
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INTRODUCTION 

Protein interactions and its pathways provide a 
valuable resource for understanding cellular function, 
signaling pathways, modeling of protein complex 
structures and various biochemical processes. 
Protein networks characterize physical relationships 
between proteins that are in direct binding contact or 
in a complex and it is essential to understand how 
gene functions and regulations are integrated at the 

level of an organism. Changes in the observed 
modularity of the human protein interaction networks 
and pathways have been used to predict biological 
and clinical outcomes, such as brain and breast 
cancer (Taylor et al., 2009 and Dutkowski and Ideker, 
2011). The technologies like two-hybrid systems 
(Legrain and Selig, 2000), protein complementation 
assays, protein arrays or tandem affinity purification 
allow the generation of large quantities of protein 
interaction data. However, for research works, 
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researchers develop their own systems for the 
storage, representation and analysis of protein 
interactions and its pathways data. 
The goal of our study of proteomics is to elucidate the 
structure, interactions and functions of all proteins 
within human intreractome. One strategy to 
determine the role of protein is to identify the protein-
protein interactions and its pathways. The increasing 
use of high-throughput and large-scale 
computational-based studies has generated huge 
amount of data stored in a number of different 
databases. Also a number of layout algorithms are 
available in popular network analysis platforms, such 
as Cytoscape, but it remains poorly understood how 
well their solutions reflect the biological processes 
that give rise to the network connectivity structure. A 
challenge for computational biology is to explore this 
huge data and to uncover biologically relevant 
interactions. 
 
Conventionally, these layout algorithms are 
specifically designed for a particular network type, 
such as gene regulatory networks or signalling 
pathways (Hosoyama et al., 2003,  Kojima et al., 
2007), metabolic pathways or biochemical networks 
(Paley and Karp, 2006, Villéger et al., 2010, Rocha et 
al., 2010), or phylogenetic networks (Gambette and 
Huson, 2008). Algorithms have also been introduced 
for grid layouts (He et al., 2010), or detailed 
visualization of small networks (Dannenfelser et al., 
2011). There is no universal layout for finding out 
which of the module arranges the best, so that the 
multiple layout algorithms have the role. 

Cytoscape network helps in analysis and visualization 
for the biological community because of its ease of 
use, compatibility with and direct access to many 
network formats and databases, as well as 
straightforward extensibility through open-source 
plug-in development (Cline et al., 2007, Shannon, 
2003). Highly connected networks, in particular those 
with dense or clustered connectivity structure, are 
more difficult to visualize, often resulting in 'hairball' 
network layouts (Suderman and Hallett, 2007, 
Pavlopoulos et al., 2008, Merico et al., 2009). 

A limitation of the conventionally used algorithms is 
relatively lengthy running times in the largest network 
graphs. For instance, generating the layout took 
almost 7 minutes for the largest yeast genetic 
interaction network (4319 nodes with 74,984 edges) 
and 8 minutes for the human HPRD PPI network 
(5699 nodes with 19,779 edges) (Johannes, 2012). 
While cytoscape modules reduced computation 
times, further speed-ups could be achieved by linking 
specific C functions to the Java implementation (Su et 
al., 2010), or by using hardware-based graphics 
acceleration (Brown et al., 2009). 

There are a large number of proteins involved in 
various pathways in normal as well as diseased 
pathways. All proteins are continually ‘turning over’; 
they are being hydrolyzed to their constituent amino 
acids and replaced by new synthesis. Overall, the 
rates of protein synthesis and degradation must be 
balanced precisely because even a small decrease in 

synthesis or a small acceleration of degradation, if 
sustained, can result in various changes. Abnormal 
proteins in the body, which are often precursors to 
disease, are first tagged to be degraded by the 
protein ubiquitin before they can be recognized. The 
changes in the protein structure and its constituents 
can occur, which leads into diseased pathways 
(Nandi, 2006). 

We suggest that a multilevel layout algorithm can be 
utilized to provide both visually attractive and 
biologically relevant networks. In the present work, a 
systematic comparative evaluation on various large-
scale networks, originating both from physical and 
genetic interaction mappings, various protein 
pathways could provide users with a practical 
guidance on how to choose a preferable layout 
algorithm for different network types and their 
characteristic properties. To facilitate drawing of 
networks with several thousands of nodes, we 
improved the computational complexity of the 
multilevel approach through the use of efficient 
Mcode module. Here we present multi layout 
algorithm method to find out the most largely 
connected protein interactions and its pathways. 
 

Source of data 

(a) HPRD  

Human Protein Reference Database (HPRD) 
contains manually acquired scientific information 
pertaining to the biology of most human proteins. 
HPRD has grown to over 36,500 unique protein- 
protein interactions annotated for 25,000 proteins 
including 6,360 isoforms by the end of 2006 
(Mathivanan et al., 2006). Totally 41,327 protein – 
protein interactions are there at present. More than 
50% of molecules annotated in HPRD have at least 
one protein – protein interactions and 10% have more 
than 10 protein – protein interaction. Experiments for 
protein – protein interactions are broadly grouped into 
three categories namely in vitro, in vivo and yeast two 
hybrids (Y2H). HPRD data is available for download 
in tab delimited and XML file formats shown in 
Figure.1. 

 

Figure 1: Human interactome in cytoscape software 
(version 2.63) with grid layout. 
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(b) IntAct 

IntAct provides an open source database and toolkit 
for the storage, presentation and analysis of protein 
interactions. The web interface provides both textual 
and graphical representations of protein interactions, 
and allows exploring interaction networks in the 
context of the Gene Ontology (GO) annotations of the 
interacting proteins. IntAct contains approx 22,000 
binary and complex protein – protein interactions. 
IntAct data is available in XML file formats.  

The IntAct data model has three main components: - 
Experiment, Interaction and Interactor. An Experiment 
may have only a single interaction. Hundreds of 
interactions occur in the large-scale experiments. An 
Interactor is a biological entity participating in an 
Interaction, usually a protein, but potentially also a 
DNA sequence, or a small molecule. An Interaction 
contains one or more Interactors participating in the 
Interaction. The representation of interactions is not 
limited to binary interactions; data on multi-protein 
interactions, e.g. the results of tandem affinity 
purification experiments (Gravin et al., 2002), can be 
represented as one interaction, without artificially 
splitting them up into several binary interactions. 

RESULTS AND DISCUSSION 
 
Protein protein interactions are involved in the 
supramolecular assemblies (collagens, elastic fibers, 
actin filaments), in the building of molecular machines 
(molecular motors, ribosomes, proteasome) and 
biological processes such as immunity (antigen–antibody 
interaction), metabolism (enzyme–substrate interaction), 
signaling (interaction of messenger molecules, 
hormones, neurotransmitters with their cognate 
receptors) and gene expression (DNA–protein 
interactions (Hanahan and Weinberg, 2000). This work 
was carried out by collecting all true binary interactions 
between proteins from HPRD and IntAct.Keshava Prasad 
et al., had reported similar work and has been published 
on 2009. 39,240 binary protein interactions were 
collected from HPRD and 7,214 binary protein 
interactions from IntAct. Binary protein interactions from  
IntAct also have been published by Bowen et al., 2009. 
There are many databases, which have large amount of 
interaction data between proteins and more than 16 
million citations in the Medline database (Zhou and He, 
2008). Lehner and Fraser (2004) described a network of 
over 70,000 predicted physical interactions between 
proteins and around 6,200 human proteins generated 
using the data from lower eukaryotic protein–interaction 
maps. Among the data bases available, HPRD and IntAct 
are manually currated, validated and a large amount of 
true proteins interaction are present. The annotations of 
both the data bases (HPRD and IntAct) were different. 
Kerrien et al. on 2007 gave an uniport ID for the 
proteins.Personalized inbuilt perl programmes and Linux 
operating system helped to identify the uniport ID for all 
the proteins that have been taken from interaction 
network databases. From 46,454 interaction databases, 
the redundant interactions were removed and finally 
40,788 protein - protein interactions were obtained and 
(Liu et al., 2010). There are several protein-protein 
interaction information extraction systems and tools for 

biomedical literature mining are available on the web 
(Zhou and He, 2008). 
The final sets of data were loaded into cytoscape 
software (version 2.6). Cytoscape helped us to improve 
drawing of large-scale networks of all human protein 
interactions. Moreover, the biological evaluation 
developed here enabled one to assess the layout 
algorithms from any existing data or in future graph 
drawing algorithm to optimize their performance for a 
given network type or structure. Grid analysis helped us 
to take important decision where there isn’t a clear and 
obvious result. The human interactome obtained had 
12463 nodes and 38226 edges are present (Shannon, 
2003). 

The small and disconnected clusters which are found 
along with the interactions were eliminated using CCA 
module. Bonetta published a similar report on 2010. So 
the way to find the highly interconnected network 
became very easy, so that the way to find the highly 
interconnected network very easily. Figure.2 shows the 
highly interacting networks using CCA module. 

 

Figure 2:  The highly interacting network. 

The densely connected regions in large protein-protein 
interaction networks that may represent molecular 
complexes using MCODE. This algorithm has the 
advantage over other graph clustering methods that 
allows isolating clusters of interest. Figure.3 shows 189 
highly interacting protein cluster using MCODE. Among 
these 89 clusters are taken, which are having the score 
more than one. 

 

Figure 3: The 189 highly interacting protein clusters. 
 
The numbers of proteins present in each of the 89 
clusters are found and all the proteins are identified 
(Bader et al., 2006). All the proteins obtained are unique. 
Each protein obtained is given to KEGG database, to 
identify its pathway, which provides valid information for 
find out the abnormal or disease causing proteins 
(Cerami et al., 2011). The proteins obtained from all the 
89 clusters are classified into 2 categories – normal and 
diseased pathways. Wang et al.., 2010 also classified the 
proteins. From all these 89 clusters, 1350 proteins were 
obtained and were unique, in which 374 proteins are in 

24 eISSN 2395-6763

http://en.wikipedia.org/wiki/XML


Biotechnol Res 2019; Vol 5(3):22-27 

22

 

e I S S N  2 3 9 5 - 6 7 6 3

 

 

the normal pathways and 976 in diseased pathways. 976 
proteins were present in both the normal and diseased 
pathways. Aldridge in 2006 also found out that certain 
proteins were found both in normal and diseased 
pathways.  
Protein structures can reveal how disease processes 
affect large sets of molecular (Pawson and Warner, 
2007) and cellular interactions (Kirouac et al., 2009). 
Since we have the set of proteins which are present in 
the Normal and Diseased pathway, further computational 
studies can be done to investigate what are the factors or 
the changes in the proteins occurred. Either structural or 
enzymatic changes in these proteins occured because of 
that they are found in normal and diseased pathways.  
Francesconi et al. on 2008 and Li et al. on 2008 studied 
how and what all changes and ccurred in the proteins, 
which caused various diseases.   
 

CONCLUSION 

By making use of the multilevel algorithm layout after 
visualizing biological networks, we can generate 
convenient visualizations for studying many pathways or 
network biology applications. We propose a network-
based analysis for the comparisons of various proteins 
and its pathways by integrating protein-protein 
interactions and gene expression profiles. The availability 
and integration of high-throughput gene expression data 
and the genome-wide protein-protein interaction may 
help to understand the changes that occur in the 
proteins.  
These interaction protein networks and pathways are 
complex systems, where new properties arise, which 
helps to find out various diseases. The systems biology 
which is ‘‘the study of an organism, viewed as an 
integrated and interacting network of genes, proteins and 
biochemical reactions which give rise to life’’ 
(http://www.systemsbiology.org/).  
This interdisciplinary approach, involving techniques from 
the mathematical, computational, physical and 
engineering sciences is required to understand complex 
protein networks. An application of these networks is to 
provide information and to formulate hypotheses on 
human diseases and therapies (drug discovery and 
targeting) (Ideker and Sharan, 2008).  

 

METHODS 

1. Uniport ID for Integrated data from various 
databases 

Both the HPRD and IntAct data are clubbed together 
so that a large amount of protein- protein interactions 
can be studied. But there may be the occurrence of 
repeated data, which cannot be identified since their 
annotations are different. Both HPRD and IntAct 
databases have different style of presenting data. It is 
a difficult task for most investigators to compare the 
voluminous data from these databases in order to 
conclude strengths and weaknesses of each 
database. Mathivanan and colleagues, 2006 helped 
biologists to choose among these databases based 
on their needs.  

Personalized perl programs used in the background 
of Linux operating system allow manual searching for 
identifying the uniport ID, for all the individual proteins 
that have been taken from both the HPRD and IntAct 
protein – protein interaction data bases.  

 

2. Use of Cytoscape 

Cytoscape is a source for visualizing human protein 
interactome, using powerful visual styles. Expression 
data can be mapped to node color, label, border 
thickness, or border color, etc. according to user-
configurable colors and visualization schemes. It 
helps to view large networks (100,000+ nodes and 
edges), very easily. It was originally created at the 
Institute of Systems Biology in Seattle in 2002. Now, 
it is developed by an international consortium of open 
source developers. Cytoscape Version 2.0 was 
initially released in 2004.  

The Grid Layout manager is ideal for laying out 
objects in rows and columns, where each cell in the 
layout has the same size. Components are added to 
the layout from left to right, top to bottom. Grid 
Analysis (also known as Decision Matrix Analysis, 
Pugh Matrix Analysis) is a useful technique for 
making a decision. Grid analysis is the technique 
worked by getting, to list our options as rows on a 
table, and the factors we need consider as the 
columns. Then score for each option/factor 
combination, weight this score, and these scores are 
added up to give an overall score for the option. 
While this sounds complex, in reality the technique is 
quite easy to use. It is particularly beneficial where 
we have confusion, to take a decision for eg. a 
number of good alternatives to choose from, and 
many different factors to take into account. Being 
able to use Grid Analysis helps us to take decisions 
confidently and rationally, at a time when other 
people might be struggling to make a decision. 

(a)CCA- Module 

CCA Module is one of the important clustering 
algorithms for partitioning network based on similarity 
or distance values. This is a very simple "cluster" that  
finds all of the disconnected components of the 
network and treats each disconnected component as 
a cluster. It supports the array sources (all of the 
numeric edge attributes) and the Cytoscape 
Advanced Settings options (cluster attribute, 
metanodes with results, enable debugging). Standard 
XML file formats such as GraphML or XGMML can 
represent substructures. However, they are not easy 
to edit by hand for many biologists. We need to 
implement a simple table/text style file format which is 
editable on spread sheet programs (Micheal, 1992). 

(b)MCODE 

The MCODE algorithm finds highly interconnected 
regions in a network. The algorithm uses a three-
stage process:-vertex weighing (weighs all of the 
nodes), molecular complex prediction and filters to 
improve the modules quality (Bader and Hogue, 
2003). The modules score cut off is the important 
parameter for deciding the module shape, size etc. 
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The higher values of the score cut off enable us to 
identify the pathways and highly connected 
interacting modules. The modules having the score 
value greater than 1, is taken for the experiment, 
since they have higher biological relevance. 

 

3. Identification and classification of proteins into 
various pathways 

 All the proteins in each of the 89 clusters were 
identified. Each protein from each cluster is given to 
KEGG database to identify its pathway. The pathways 
are classified into 32categories - Normal pathway and 
diseased pathway. 
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